Core−Shell Nanocomposites Based on Gold Nanoparticle@Zinc− Iron-Embedded Porous Carbons Derived from Metal−Organic Frameworks as Efficient Dual Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions
نویسندگان
چکیده
Core−shell nanocomposites based on Au nanoparticle@zinc−ironembedded porous carbons (Au@Zn−Fe−C) derived from metal−organic frameworks were prepared as bifunctional electrocatalysts for both oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). A single Au nanoparticle of 50−100 nm in diameter was encapsulated within a porous carbon shell embedded with Zn−Fe compounds. The resulting Au@Zn−Fe−C hybrids exhibited apparent catalytic activity for ORR in 0.1 M KOH (with an onset potential of +0.94 V vs RHE, excellent stability and methanol tolerance) and for HER as well, which was evidenced by a low onset potential of −0.08 V vs RHE and a stable current density of 10 mA cm−2 at only −0.123 V vs RHE in 0.5 M H2SO4. The encapsulated Au nanoparticles played an important role in determining the electrocatalytic activity for ORR and HER by promoting electron transfer to the zinc−iron-embedded porous carbon layer, and the electrocatalytic activity was found to vary with both the loading of the gold nanoparticle cores and the thickness of the metal−carbon shells. The experimental results suggested that metal-embedded porous carbons derived from metal−organic frameworks might be viable alternative catalysts for both ORR and HER.
منابع مشابه
Computational screening of core@shell nanoparticles for the hydrogen evolution and oxygen reduction reactions.
Using density functional theory calculations, a set of candidate nanoparticle catalysts are identified based on reactivity descriptors and segregation energies for the oxygen reduction and hydrogen evolution reactions. Trends in the data were identified by screening over 700 core@shell 2 nm transition metal nanoparticles for each reaction. High activity was found for nanoparticles with noble me...
متن کاملNovel Porous Iron Molybdate Catalysts for Synthesis of Dimethoxymethane from Methanol: Metal Organic Frameworks as Precursors
As a novel performance, methanol gas conversion to dimethoxymethane (DMM) in one-step based on Fe-Mo-O (iron molybdate mixed oxides) catalysts with high surface area fabricated by metal organic frameworks (MOFs) precursors was improved. For this approach, at first, Fe(III) precursors (iron (III) 1,3,5-benzenetricarboxylate (MIL-100 (Fe) and iron terephthalate (MOF-...
متن کاملMetal–Organic‐Framework‐Derived Dual Metal‐ and Nitrogen‐Doped Carbon as Efficient and Robust Oxygen Reduction Reaction Catalysts for Microbial Fuel Cells
A new class of dual metal and N doped carbon catalysts with well-defined porous structure derived from metal-organic frameworks (MOFs) has been developed as a high-performance electrocatalyst for oxygen reduction reaction (ORR). Furthermore, the microbial fuel cell (MFC) device based on the as-prepared Ni/Co and N codoped carbon as air cathode catalyst achieves a maximum power density of 4335.6...
متن کاملIn situ Fe2N@N-doped porous carbon hybrids as superior catalysts for oxygen reduction reaction.
Developing efficient and economical noble-metal free catalysts for oxygen reduction reaction (ORR) is one of the essential factors for the industrialization of fuel cells. Recent studies on transition metal ORR catalysts have become the priority to practical low-temperature fuel cells. Herein, we proposed a novel in situ design, Fe2N nanoparticles (NPs) in an N doped porous carbon matrix (Fe2N@...
متن کاملHighly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions.
Nitrogen-doped graphitic porous carbons (NGPCs) have been synthesized by using a zeolite-type nanoscale metal-organic framework (NMOF) as a self-sacrificing template, which simultaneously acts as both the carbon and nitrogen sources in a facile carbonization process. The NGPCs not only retain the nanopolyhedral morphology of the parent NMOF, but also possess rich nitrogen, high surface area and...
متن کامل